
J .  Fluid Mech. (1991), vol. 230, pp. 245-269 

Printed in areat Britain 
245 

Instability and transition of disturbed flow over a 
rotating disk 

By ALAN J. FALLER 
Institute for Physical Science and Technology, University of Maryland, College Park, 

MD 20742, USA 

(Received 20 July 1990 and in revised form 16 February 1991) 

Disturbed flow over a rotating disk can lead to transition of the von KBrmBn 
boundary layer at a much lower Reynolds number, Re, (i.e. smaller radius) than that 
due to the well-known Type 1 stationary mode of instability. This early transition is 
due to the excitation of the Type 2 instability, similar to that found in the Ekman 
layer. Detailed numerical values of the growth rates, phase speeds, group velocities, 
neutral curves, and other characteristics of these two instabilities have been 
calculated over a wide range of parameters. Neutral curves for the Ekman and 
Bodewadt boundary layers also are presented. The minimum critical Reynolds 
numbers for the von KBrmBn, Ekman and Bodewadt layers are Re,(*) = 69.4, 54.3, 
and 15.1 with wavelengths L = 22.5, 20.1, and 16.6 and a t  angles e = - 19.0°, 
- 23. lo, and -33.2', respectively. These minimum critical values frequently do not 
well describe laboratory observations, however, because at  larger Re other modes 
grow more rapidly and dominate the flow. 

The computed results are in excellent agreement with laboratory observations 
wherever comparison is possible. The growth of representative Type 1 instabilities 
with radius is shown to lead to N-factors greater than 9 at  Re = 520 as appears to be 
necessary for transition to turbulence by the interaction of Type 1 with the basic 
flow. The growth of Type 2 instabilities with radius can lead to three additional 
mechanisms of transition. The necessary levels of excitation of Type 2 for these 
different mechanisms are estimated. 

A sequence of photographs from a cine film illustrate one of the transition 
mechanisms discussed: the interaction of Type 2 instabilities and a secondary 
instability that is nearly perpendicular to the Type 2 vortices. 

1. Introduction 
The von KBrmAn layer, the boundary layer flow due to a rotating disk in an 

otherwise stationary fluid, has long been a prototype for studies of instability and 
transition in general three-dimensional boundary layers. The instability that appears 
in the form of stationary spiral vortices was first studied by Smith (1947). Gregory, 
Stuart & Walker (1955) discussed the application to swept-back airfoils, performed 
well-controlled experiments to find critical values of the Reynolds numbers for 
instability (Re,) and for transition (Re,), and developed a partial theory showing that 
those vortices were associated with an inflexion point in the cross-vortex basic flow. 
This instability was referred to as Type 1 by Faller & Kaylor (1966a) who found that 
the von KBrmBn layer has a second instability that is analogous to the Type 2 
instability of the Ekman layer (Faller 1963 ; Faller & Kaylor 1966a, b). Type 2 as well 
as Type 1 has the form of spiral vortices but of the opposite angle relative to circles 
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on the disk and with a lower value of Re,, and the vortices move rapidly outward, 
amplifying as they progress. Lilly (1966) independently found this instability in his 
numerical solutions of the eigenvalue problem for the Ekman layer. He referred to 
it as the ‘parallel mode’ of instability and showed that the mechanism involves 
Coriolis forces rather than the inflexion point. Type 2 also has been found in diverse 
situations, as for example in the flow in a spherical gap (Bueler & Zierep 1983). 

Type 2 was not found by Gregory et al. (1955) for two reasons. First, their 
observational techniques were suited primarily for detection of the known stationary 
vortices. Second, because any disturbance of air in the room raised havoc with their 
determination of a consistent value of Re,, they were extraordinarily careful to assure 
disturbance-free conditions. In Faller & Kaylor (1966a) it was found that external 
disturbances easily excite Type 2 instabilities, and it is likely that in the Gregory 
et al. (1955) experiments early transition arose from the excitation of this unknown 
instability. A major goal of this paper is to assess the mechanism(s) by which 
external disturbances lead to early transition and the role(s) played by the Type 2 
instability. 

In  the Ekman-layer experiments of Faller (1963) (in water) Type 2 instabilities 
appeared consistently only when there were mechanical disturbances of the 
experiment. This dependency was verified in rotating disk studies (also in water, 
Faller & Kaylor 1966a) where only Type 1 appeared if the experiments were 
performed carefully and where Type 2 appeared more or less in proportion to the 
strength of disturbances. 

As with the Tollmien-Schlichting waves a Type 2 vortex (or wave) in the von 
KBrmBn layer amplifies as it moves toward larger Re. Thus it requires triggering to 
attain an observable amplitude close to its critical value, Re,(,,. But the Type 2 
vortices of three-dimensional boundary layers should not be confused with or 
referred to as a Tollmien-Schlichting instability. Type 2 has a different dynamical 
mechanism that is dependent upon centrifugal and/or Coriolis forces, and the 
vortices are nearly parallel, not perpendicular, to the free-stream flow. Also note that 
the growth rate of Type 2 as Re+w depends upon the method of scaling time 
(Appendix A). 

The disturbed flow due to instabilities may sometimes be referred to as waves and 
sometimes as vortices. The disturbances have vorticity, and when the basic flow is 
subtracted from the total flow they appear as vortices. But in terms of the total flow, 
the instability appears as a waviness of the streamlines; and in visualization 
experiments dye in the lower part of the boundary layer takes on a wavy character. 
Moreover, the propagation of energy appears to follow the usual kinematic formulae, 
originally derived for waves, by which the group velocity is related to the phase 
speed. Therefore a description as waves often seems to be appropriate. 

The experiments in water (Faller & Kaylor 1966a) showed a specific mechanism 
for transition to turbulence that involved Type 2 vortices and a secondary 
instability. When the primary vortices attained a sufficient amplitude, a high- 
wavenumber secondary instability, then referred to as ‘gills ’, formed nearly 
perpendicular to the primary vortices. (The term ‘ribs’, as later suggested by other 
authors, seems more appropriate and will be used hereafter). Once formed, the two 
sets of vortices interacted rapidly to produce turbulence. This occurred well below 
Re,(l, as known at that time. Detailed data on the primary (Type 2) and secondary 
vortices are discussed in 97. 

Many studies have been concerned with Type 1 and it has been found that the 
china clay technique of Gregory et al. (1955) and other visual methods greatly 
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overestimated Re,(l,. Most recently Malik, Wilkinson & Orszag (1981), Wilkinson & 
Malik (1985), Mack (1985), and Malik (1986) have shown that experimental and 
numerical studies are in approximate agreement and have converged on the value 
Re,(,, = 285. In  Malik et al. (1981) it was briefly mentioned that there appeared to be 
a critical value for a non-stationary instability at Re = 50, but further information 
on that instability was not provided and its possible significance for transition was 
not considered. 

In this paper I present a summary of new numerical calculations of the instabilities 
over a rotating disk, emphasizing Type 2, and a description of four plausible 
mechanisms of transition to turbulence. The mechanism selected in any particular 
experiment should depend upon the level of excitation of Type 2 by disturbances in 
the external flow. More extensive results, upon which this paper is based, are 
contained in recent technical notes (Faller, Yang & Piomelli 1989; Faller 1990). 

2. The theoretical model 
Consider the flow induced in a homogeneous fluid rotating at angular speed of by 

a disk rotating at angular speed wb about the same axis of rotation. The radius of the 
disk and the extent of the fluid above the disk are taken to be infinite. The von 
KBrmBn layer arises for wf = 0, wb =!= 0, the Bodewadt layer occurs when fdb = 0, 
wf + 0, tind the Ekman layer is found when w, x wf. To incorporate this range of 
conditions in one model, a ‘system rotation rate’, 52, is defined by 

52 = w, / (2 -Aw/a)+~b/ (2+Aw/52) ,  (1) 

(2 )  

where Aw = wf-wb, or solving explicitly for 51, 

where Zw = wf + wb. 
A characteristic boundary-layer depth applicable to all cases is given by 

D = (v/52)3 where v is the kinematic viscosity. An appropriate Rossby number is 
Ro = Aw/52, and a useful non-dimensional Coriolis parameter is Co = 2-Ro-Ro2. 

The following steps summarize the manipulation of the NavierStokes equations 
and the method of solution: 

(i) The equations in polar coordinates are separated into those of a basic flow and 
fluctuation equations. The basic flow is the axially symmetrical similarity solution 
taken relative to the rotating boundary. The equations are made non-dimensional. 

(ii) The basic flow equations are solved numerically, and the fluctuation equations 
are linearized to form perturbation equations. 

(iii) The radial and tangential components of the perturbation vorticity equation 
are derived. 

(iv) The perturbation equations are converted to a local rectangular ( z , y )  
coordinate system centred at some fixed value of T with 2 along the radial direction. 

(v) The ‘rectangularized’ equations are rotated about the z-axis so that the new 
z-axis is at an angle B with respect to the tangential direction. Instabilities are 
assumed to be two-dimensional vortices independent of the rotated x-axis. 

(vi) The equations to be solved now comprise the time-dependent perturbation 
equations for the z-component of velocity, u, and the z-component of vorticity, f ,  
plus the Poisson equation relating f to a stream function, q5, in the ( y ,  2)-plane. 

(vii) The boundary conditions are no slip at z = 0, free slip at  z = H % D, and 
periodicity in y. Dependent variates are represented as harmonic waves of 
wavelength L in y ,  and the independent variates are thus reduced to z and t (time). 

51 = Zw/4 + ( ( h / 4 ) ’  + ( A ~ ) ~ / 2 ) f  
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(viii) The equations are integrated in t on a vertical grid for selected values of the 
parameters Re, e, and L (starting with randomized initial values) until a constant 
rate of growth, a, of the perturbation kinetic energy and a constant phase speed of 
the disturbance, C,, are attained. 

The component equations of motion for a uniform fluid in a cylindrical polar 
coordinate system rotating with the angular speed w,, may be written as 

cv" 
v",+(a.v)e+-+2wbC = 

r (4) 

6 , + ( i i . V ) 6  = -p",+vV2@,, (5) 

(TC),/r+Ce/r+6, = 0, (6) 

and the continuity equation is 

where C, v", and 6 are the components of the velocity ii in the r ,  8, and z directions, 
respectively, the constant specific gravity is included with the pressure as p ; and the 
subscripts t ,  r ,  8, and z denote partial differentiation. The fluid in the semi-infinite 
domain z > 0 is rotating at angular speed of except for the boundary-layer effects of 
the differential rotation, Au. 

The dependent variates are separated into those of a basic flow (capitals) and 
fluctuations, as 

(7) 

The basic-flow equations that corresponds to (3)-(6) are found by substituting (7) 
and by setting (u, v, w, p) = 0. Assuming an axially symmetrical similarity solution to 
the basic flow with the similarity variates F(z ,  t ) ,  G(z ,  t )  and H(z ,  t )  defined by 

(C, v", 5, $1 = (U, v, w, P )  + (u, 'u, w, PI. 

U = AwrF, V = AwrG, W = AwDH (8) 

and scaling lengths by D and time by Q-l, the radial basic flow equation is 

l$ + Ro(F2 - G' + HFz) - COG = - P,* + F,,, (9) 

where t and z are now dimensionless, and P* = AwQrDP is a suitably defined non- 
dimensional pressure whose radial gradient can be determined from the relative 
tangential flow as z + 00. There V = Awr and F = F, = F,, = 0,  so P* = Ro + Co. Then 
the basic flow equations that arise from (3) and (4) are 

(10) 

G,+RO(~FG+HQ,)+COF-G, ,  = 0, (11) 

l$ + R o ( P  + HFz- (G2 - 1)) - Co(G- 1) -F,, = 0 ,  

and from (6) one obtains 

Equations (lo)-( 12) were solved as time-dependent equations on a uniform grid 
typically with Az = 0.1 and with 400 points, until steady-state values of P, G, and H 
were attained. 
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The non-dimensional perturbation equations are found by : (i) subtracting the 
basic flow equations from (3)-(6), (ii) omitting products of fluctuations, and (iii) 
introducing the transformations 

(u ,v ,  w)+AwD(u,v,w), (r,z)+D(r,z), t+t/Q, p+AwQDep, (13) 

where the right-hand-side variates are dimensionless. The non-dimensional per- 
turbation equations are then 

u 2v, + Ro(Hu, +Fu + 2Qw) - Co v = -p, + V2u ---- 
re re ' (14) 

(15) 
v 2u, 

r re re ' 
+Ro(Hv, + FV + 2Gu) + CO u = -&+ V2v --+- 

wt +Re(Fw,+Gw,/r)+Ro(Hw,+wH,) = -p,+V2w, (16) 

(m),/r+v,/r+ wz = 0, (17) 

where Re is defined and related to Ro by 

Re = (Awrd)D/v = Awl52 = rRo (18) 

and where rd is the dimensional radius. All variates are dimensionless from (18) 
onward. 

Note that for the von Kirmin layer, since Aw = -wb, 52 = q,, Ro = - 1, so Re = - r  
and is negative. But for convenience Re will be generally treated as a positive number 
except where the negative is necessary. 

The method of solution requires the adoption of a local rectangular coordinate 
system (centred at some fixed value of Re) and to this end let dr -+ dz and rd8 +. dy. 
Consistent with this rectangularization some terms that would arise from use of the 
polar form of continuity have been dropped, and the 1/r and 1/." viscous terms have 
been omitted because 1/r = - l/Re. The rectangularized horizontal-component 
vorticity equations, derived from (14)-( 16), are then 

6, +Re(F~z+G~y-wG, , -Fzvz+G,  w , ) + R o ( H ~ - F ~ - ~ G u ) , - C ~ U ,  = V25, (19) 

qt + Re(Fq, + Gqy + wFzz - F, vy + G, wu) + Ro(Hq + Fw - 2Gv), - Co v, = V2q, (20) 

where 5 and q are the 2 (radial) and y (tangential) components of vorticity. 
The two pairs of equations, (14) (15) and (19) (20), are now rotated through an angle 

@ = B + in aa illustrated in figure 1, where B is the angle of the new z-axis with respect 
to the tangential direction. The instabilities are assumed to be two-dimensional 
vortices independent of this new z-direction, so in the rotated equations a/az = 0 and 
only the equations for the new u and 5 need to be retained. The reoriented equations 
to be solved are 

ut +Re( - (FC+ GS) uy + ( -F, S+ G, C) w )  

+Ro(Hu, + FU - 2Gv) - CO v = uUy + u,,, (21) 

5, +Re( - (FC + GS) cy + (F,, C + G,, 8) w) + Ro(Hf - Fv - 2Gu), 
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RQIJRE 1. The conversion from polar (r, 0)  to rotated rectangular (2, y) coordinates by rotation 
through the angle /3 = ~+!jn. Instabilities are assumed to be two-dimensional vortices independent 
of 4. 

where C = cos E, S = sin E. The stream function for the flow in the new (y, 2)-plane is 
defined by 

w = q&, v = -$,, 6 = V2$. (23) 

3. Numerical methods 
Equations (21)-(23) were solved as in Faller & Kaylor (19663), and the method is 

only summarized briefly here. The dependent variates u, 6, and $ were taken to be 
periodic in y with wavelength L and were written as the sum of sine and cosine 
components. These were represented on a uniformly spaced but staggered vertical 
grid with 6 and q5 at the even numbered levels and u, v, and w at the odd levels. The 
lower boundary was J = 1 with u = v = w = 0. At the upper boundary, typically 
J = 200 or 400, the conditions were u, = 0, w, = 0, and w = 0. 

Given specific values for Re, E ,  and L, the equations for the sine and cosine 
amplitudes of [ ( J ,  t )  and u(J, t )  were integrated over t ,  using the Adams-Bashforth 
time-step, centred differences in z, and randomized initial values. Each integration 
was continued until the solution steadied to a constant a = aK/at where K is the total 
perturbation kinetic energy. 

The exaggeration of a by the Adams-Bashforth method due to finite At (Faller & 
Kaylor 19663) was eliminated by reducing At in steps to i, a, and Q of its initial value 
and by then quadratically extrapolating the sequence of values of a to At = 0 
(Richardson extrapolation). 

Data obtained at selected times included a, C,, the kinetic energy of the 
overturning cells, - 

L H  
CK = (2HL)-' lo lo (v2 + w2) dy dz, 

the kinetic energy of the 2-component of the flow, 
L H  

UK = (2HL)-l I0 I0 u2 dy dz, 

where K = CK+ UK, and the ratio RK = UK/CK. This ratio has values of typically 
about RK = 20, thus indicating values of u many times larger than those of v and w. 
See tables 1 and 2. 
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Wavelength, L 

Re 15 20 25 30 35 40 45 50 55 60 

a 4.479 4.583 3.433 1.972 0.566 0.487 0.804 0.875 0.830 0.736 
480 C, -0.0313 -0.0246 -0.0158 -0.0054 0.0082 0.0253 0.0356 0.0434 0.0498 0.0554 

RK 19.8 15.9 14.1 13.4 13.8 12.7 10.5 8.9 7.7 6.8 

2.613 2.614 1.502 0.046 0 0.100 0.393 0.428 0.374 0.291 

{ 
400{ "., -0.0325 -0.0255 -0.0159 -0.0036 0 0.0325 0.0405 0.0476 0.0535 0.0590 

RK 19.5 15.9 14.4 14.4 0 11.9 9.3 7.9 6.8 6.0 

a 0.893 
320 C, -0.0264 I RK 16.1 

TABLE 1. The growth rate, a, phaae speed, C,, and ratio, RK, at c: = 15O aa a function of Re and 
L. These results are typical of the Type 1 instability. Values at  intervals of 40 in Re, at angles 
from 20' to - 30' in intervals of 5O, and for L from 10 to 60 in intervals of 5 are available in Faller 
et al. (1989). 

Wavelength, L 

Re 15 20 25 30 35 40 45 50 55 60 

- 0.562 1.159 1.434 1.566 1.625 1.644 1.637 1.613 1.577 
- 0.3188 0.3205 0.3226 0.3247 0.3269 0.3291 0.3313 0.3335 0.3356 

- 0.643 1.130 1.360 1.469 1.510 1.512 1.488 1.449 1.401 
- 0.3193 0.3212 0.3236 0.3261 0.3287 0.3312 0.3338 0.3365 0.3390 

- 0.700 1.092 1.272 1.341 1.349 1.323 1.276 1.218 1.154 
- 0.3199 0.3224 0.3253 0.3284 0.3316 0.3349 0.3380 0.3410 0.3439 

RK - 69.8 48.4 37.7 31.7 27.6 24.6 22.5 20.7 19.2 

400 {E, 

320{!:, 

RK - 59.5 42.7 34.1 28.8 25.3 22.6 20.5 18.8 17.4 

RK - 49.9 37.1 28.5 25.6 22.4 20.0 18.1 16.5 15.2 

a 0.064 0.735 1.015 1.114 1.122 1.084 1.026 0.956 0.882 0.808 

RK 60.9 40.8 31.2 25.5 21.6 18.8 16.6 14.9 13.5 12.4 

a 0.226 0.647 0.764 0.761 0.709 0.636 0.556 0.475 0.397 0.322 

RK 44.2 30.8 23.6 19.1 16.0 13.8 12.1 10.8 10.0 9.0 

C, 0.3187 0.3213 0.3248 0.3289 0.3329 0.3369 0.3408 0.3445 0.3482 0.3516 

C, 0.3204 0.3252 0.3308 0.3363 0.3417 0.3468 0.3516 0.3561 0.3603 0.3643 

a -0.035 0.098 0.086 0.030 -0.042 -0.113 -0.182 -0.246 -0.304 -0.358 
0.3293 0.3381 0.3464 0.3542 0.3613 0.3676 0.3737 0.3790 0.3839 0.3885 

TABLE 2. The same as table 1 but for Type 2 a t  E = - 15. Italicized values show the shift of the 
maximum in a aa Re is changed. 

RK 24.3 17.0 12.9 10.4 8.8 7.5 6.6 5.9 5.4 4.9 

As with At, Richardson's method was used with Ax=  0.4 and Ax = 0.2 to 
extrapolate results to Az = 0. The extrapolated values were often checked with 
higher resolution calculations, and the final values of a are accurate to better than 
three decimal places. For the Ekman layer the value of Re,(,, is almost exactly the 
same as that of Iooss, Nielsen t True (1978), and for the rotating disk Re,(,, is the 
same as that of Malik (1986). All computations used a Macintosh 11. 
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4. Computational results 
4.1. Neutral curves and growth rates 

Figure 2 shows neutral curves as functions of Re and k for several values of E .  (Results 
are discussed in terms of both L and k = 2n/L,  and table 3 gives the conversion.) 
These were obtained by a curve-following routine that varied Re and k to keep a close 
to zero. These lengthy computations used Az = 0.4 and therefore are slightly in error, 
but over much of the diagram the errors are comparable to the drafting uncertainties. 

The Type 1 and Type 2 instabilities are clearly separated in figures 2 (a) ,  2 ( b )  and 
2(c).  At E = 15 Type 1 has the lower value of Re, but at 10" Type 2 has a lower 
minimum. As E becomes negative Type 1 retreats while Type 2 continues to advance 
to reach a minimum of Re,(2, = 69 a t  E = - 19". But note that below E = - 15" the 
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FIGURE 3. The rate of growth of kinetic energy a aa a function of Re for selected values of E 

and L. 

L 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 

k 
0.628 
0.419 
0.314 
0.251 
0.209 
0.180 
0.157 
0.140 
0.126 
0.114 
0.105 

k 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 

L 
62.8 
41.9 
31.4 
25.1 
20.9 
18.0 
15.7 
14.0 
12.6 
11.4 
10.5 

TABLE 3. Conversions between wavelength L and wavenumber k. 

upper branch of the neutral curve rises until E = -25', and there appear to be first- 
order discontinuities in the curves a t  - 25", - 30" and - 35'. These patterns suggest 
that below approximately B = - 15 the unstable region may be the superposition of 
two instabilities. But attempts to clearly distinguish a third instability (discussed in 
Faller 1990) have been unsuccessful. 

Figure 3 shows curves of a(Re) for the three combinations of E and L that are 
denoted by horizontal lines in figures 2 (a)  and 2 ( e ) .  At E = 10' and L = 15 ( k  = 0.419) 
we see a linear increase of a with Re that is typical of the Type 1 instability 
(Appendix A). At the same angle but for L = 50 the curve of a starts from 0 
parabolically as a typical Type 2 instability, but at  large Re there is a change to the 
more rapid linear growth typical of Type 1. This may be understood from figure 2 (a)  
by noting that an extension of the upper portion of the dashed neutral curve 
(Type 1, B = 10) probably would dip below the horizontal line at about Re = 900. 

Figure 4 illustrates Re,(€, k )  and shows the minimum values Re,(l, = 285 and 
Re,(2, = 69. The shaded region, Re, > 400, is a clear demarcation between the two 
instabilities. Figure 5 gives the patterns of a and C, at Re = 400. Here the maxima 

9-2 
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t l4 
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e (deg.1 

FIQURE 4. Re, as a function of E and k or L.  Minima are Re,(%, = 69 found at k = 
(L = 22.5) and e = - 19O, and Re,,!, = 285.3 found at k = 0.378 (L = 16.62) and E = 13.9'. 
indicate data points for the analysis. 

0.279 
Dots 

c: (deg.) 

FIGURE 5. The growth rate of kinetic energy, a, at Re = 400 (0 lines and maxima labelled) with 
the coordinates of figure 4. Dashed lines indicate phase speeds, C, (labelled 0 to 0.40). 

of 01 for Types I and 2 are nearly equal despite the large difference in their values of 
Re, because of the more rapid linear growth of Type 1. Note the shift of the centre 
of the contours for Type 2 from figure 4 to figure 5. At Re = 400 the maximum for 
Type 2 has a larger L and larger E. This shift has a bearing on which mode of 
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FIGURE 6. Three-dimensional neutral curves for the von KarmBn layer and for the Type 1 and 
Type 2 instabilities. Values of E are given at selected points on the curves. The thicker solid lines 
are for Az = 0.4, the thinner line is for Az = 0.2, and the dashed line is an extrapolation to 
Az = 0. 

instability might be expected to first reach finite amplitude when random 
disturbances excite Type 2 ($5) .  

The lines of constant C, in figure 5 show that both Type 1 and Type 2 can have 
C, = 0, and the low-k lobe on the neutral curve found by Malik (1986) for stationary 
disturbances at Re = 441 probably was the Type 2 instability. 

The neutral curves of figure 2 do not sharply select the values of Re,, but this has 
been done with a three-dimensional neutral-curve follower that produced the curves 
of figure 6. Az = 0.4 was used for the full curves, but near Re,, Az was reduced to  0.2 
(thin 'bow shock' line) and an extrapolation was made to Az = 0 (dashed lines). For 
Type 1 the correction was substantial but for Type 2 it was less than the inaccuracy 
of the drawn graph. The angles E are given at  selected points along the curves. 

Figure 7 shows patterns of q5 and u for one example of Type 1 and two examples 
of Type 2 that are of interest later for their energy cycles (54.3). Figures 7 (a)  and 7 ( b )  
correspond closely to the conditions of maximum a in figure 4. Figure 7(c) is an 
example with large C, as reflected in the tilt of the pattern. The zero lines of $ ( z )  and 
u(z )  may be thought of as eigenfunctions. 

4.2. The Ekman and Bodewadt layers 
Figure 8 shows three-dimensional neutral curves for the Ekman layer (Ro = 0) and 
the Bodewadt layer (Ro = 1). As with the von KQrmQn layer, the Type 1 and Type 2 
curves are clearly separafed by angle. But whereas in the von KQrmQn layer both 
branches of both curves could be followed to above Re = 500, such was not the case 
for these two boundary layers. In following the Type 2 (lower) curve for the Ekman 
layer toward increasing k, when a point near k = 0.44 was reached the angle of 
maximum instability shifted rapidly from e = - 18" to E = 5', from Type 2 to Type 1. 
Similarly, when the Type 1 (upper) curve was followed downward the shift to Type 2 
occurred at about k = 0.384, a shift from 4' to -20'. For the Bodewadt layer the 
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FIQIJRE 7. Patterns of stream function $ (solid lines) and the z-component of flow, u, (dashed lines) 
in the (y,z)-plane. (a)  Type 1 for Re = 400, L = 17, and E = 15. (b )  Type 2 for Re = 400, L = 35 and 
E = -5". (c) Type 2 for Re = 400, L = 35 and E = -30'. 

Type 1 curve never reached a clear maximum before the computation automatically 
ahiftd t.n Tvnp 3. Thew nhifts reflect, certain features of the three-dimensional 
neutral surfaces. 

For the Ekman layer (Ro = 0) the differential equations are exact and the 
computational results are accurate. For the Bodewadt layer, however, the critical 
value of Re is very low (Re,(,, = 15.1) and the errors due to the various 
approximations made in $2 should be more serious than for the von KBrmBn layer. 
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FIQURE 8. Neutral curves similar to those of figure 6 but for the Ekman and Bodewadt layers. 

Although the Bodewadt layer results are here limited to neutral curves, it is notable 
that above only Re = 25 Type 1 has larger growth rates than Type 2. Since good 
experiments below Re = 50 are almost impossible to attain, the instability seen in 
Bodewadt layer experiments is usually Type 1. 

4.3. Energy budgets 
Kinetic energy equations have been derived from (21) and (22) with Ro = - 1 by 
multiplying by u and by -#, respectively, and averaging over y and z (overbars) to 
obtain - - -  - - _ -  

-Re V ,  ww - (Htw +Pv2) -2( 1 - G) uw- (w;+ w,"+wi + w,") 
(24) 

aCK -- - 
at ----' 

I + IV + I11 + VI 

I1 + V - I11 + VII 

Terms I and I1 represent the extraction of energy from the basic flow by the 
Reynolds stresses. Term I11 is the Coriolis/centrifugal exchange from UK to CK. 
Terms IV and V are Ro terms and thus depend upon the geometrical effects of the 
change of Re with radius. As defined, the Ro terms turn out to be always negative and 
therefore extract energy from both CK and UK. Curiously the Ro terms for CK 
involve only w and w while the Ro terms for UK involve only u. The energy budget 
is completed by the negative definite viscous dissipation terms VI and VII. 

Figure 9 illustrates the energy budgets for the three combinations of Re and k used 
for figure 7. Figure 9(a)  is for Type 1. There Term I is the only source of energy for 
CK, and the Coriolis/centrifugal transfer is from CK to UK. Term 11, the generation 
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FIGURE 9. Energy flow diagrams. The ‘key’ refers to equations (24) and (25); (a-c) correspond 
to (a*) of figure 7. 

of UK by the basic flow, is by far the dominant term, and UK turns out to contain 
much more energy than CK. But the dashed arrow in the key indicates that w, from 
the cells, is essential for Term 11, and so the existence of cells is essential to the 
generation of UK by the basic flow. 

Figure 9(b) is for Type 2 (also figure 7b) where the cells are now driven more by 
Term I11 than by Term I. This is characteristic of the Type 2 instability. 

Figure 9 (c) is an example where Term I transfers energy to the basic flow from the 
cells, an example of negative eddy viscosity. Here the only source of energy is to UK 
by Term 11. The cells (CK) are then supported entirely by a transfer from UK by 
Term 111. This cycle is clearly a ‘bootstrap’ operation. The cells are essential, 
through w, for the primary energy transfer to the fluctuations, u, by Term 11, and 
u in turn is necessary for the Coriolis/centrifugal maintenance of the cells, Term 111. 
These different energy transfer cycles must be reflected in the patterns of 4 and u in 
figure 7, but it is not easy to visually detect the essential differences. 

4.4. Group velocities 
A major goal is to determine the radial propagation and growth of Type 2 
instabilities to assess their importance for transition. For this purpose the group 
velocity CJRe, E ,L)  has been calculated from the array of CJRe, s ,L) .  

Spooner 6 Criminale (1982) have shown, for small-amplitude unstable disturbances 
in the Ekman layer, that group velocities can be quite accurately determined from 
the standard kinematic formula. Similar computations by this author and Mr Shen- 
Teng Y ang (unpublished) have confirmed those results. 
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Wavelength, L 

Re 20 25 30 

480 0.0757 0.0687 0.0580 
0.4974 0.5030 0.5160 

0.0751 0.0640 - 
400 {$ 0.5074 0.5120 - 

TABLE 4. Group velocity components for the Type 1 instability at  e = 15 as a function of L and Re. 
Top, the radially outward component, C,. Bottom, the tangential component, C,, relative to the 
disk and opposite to the direction of rotation. 

Re 20 25 30 

- 0.1191 0.1206 

- 0.1201 0.1215 

- 0.1213 0.1235 
- 0.7406 0.7260 

0.1205 0.1230 0.1264 
0.7443 0.7227 0.7056 

480 {% - 0.7572 0.7479 

4O0 & - 0.7514 0.7397 

320 { $ 
240 { 2 

Wavelength, L 

35 40 

0.1232 0.1258 
0.7371 0.7248 

0.1244 0.1281 
0.7262 0.7133 

0.1266 0.1297 
0.7104 0.6968 

0.1306 0.1340 
0.6903 0.6785 

45 

0.1287 
0.7143 

0.1312 
0.7009 

0.1335 
0.6849 

0.1384 
0.6677 

50 

0.1317 
0.7030 

0.1338 
0.6890 

0.1378 
0.6731 

0.1419 
0.6599 

0.1231 0.1269 0.1314 0.1357 0.1399 0.1444 0.1488 
0.7169 0.6974 0.6832 0.6727 0.6643 0.6572 0.6526 

0.1291 0.1337 0.1387 0.1445 0.1495 0.1543 0.1602 
0.6929 0.6838 0.6780 0.6744 0.6710 0.6696 0.6688 

TABLE 5. The same as table 4 but for the Type 2 at E = - 15. 

80 {$ 

55 

0.1351 
0.6923 

0.1370 
0.6791 

0.1411 
0.6648 

0.1454 
0.6533 

0.1526 
0.6483 

The group velocity can be found from 

c, = -V,U (26) 
where u is the wave frequency and the operator v k  refers to the gradient with respect 
to the components of k in wavenumber space. Thus in rectangular coordinates using 
k, and k, as the wavenumber components 

and in polar coordinates, here using the variates k and 6, 

where the unit vectorsp and n are parallel and normal to the waves, respectively. The 
polar form also can be written as 

(29) 
which is particularly suitable for this study where values of C, have been determined 
over an array of values of L and E.  In Appendix B (29) is derived directly by what 
is thought to be a novel approach, 

Tables 4 and 5 give examples of the radial and tangential group velocity 
components, C ,  and C,. From table 4 the group speed averages about C, = 0.51, 
and the angle of C, relative to the tangent ranges from 6.4' to 8.5'. Curiously it is 

C, = iaU/ak,+jau/ak,, (27) 

c, = n a U / a  + p  au/k a€, (28) 

c, = n(c,-L ac,/aL) +p ac,/aE 
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possible for the group velocity to be exactly along the direction of the vortices for 
angles in the vicinity of E = 8", and in such a case 'Venetian blind effect ' (Appendix 
B) would seem to be an appropriate descriptive term. 

This nearly tangential direction of the group velocity was found by Cebeci & 
Stewartson (1980) who analysed the relevant OrrSommerfeld equation and noted 
that 'disturbances begin by travelling outward but at a very small, almost constant, 
angle ( -  8") to the negative of the direction of the motion of the disk, i.e. they are 
left behind by the rotating disk '. In table 4 all values of C,, are positive whereas the 
phase speeds at  E = 15" (table 1) all have an inward (negative) component. 

Figures 3 and 11 from Wilkinson & Malik (1985) show normalized wave forms as 
a function of radius and azimuth angle from hot-wire measurements of a velocity 
component, u', for a stationary Type 1 instability. From those patterns one can 
clearly see and measure the direction of energy propagation. The angles of four 
conspicuous patterns are 8.4f 1.4", 8.5f2.5", 9.5f2.8" and 9.5+3.7", where the 
limits indicate estimates of the apparent widths of each wave group. The average 
angle is then 9.0" with an average spreading angle of 2.6". Thus the experimental and 
numerical results on the direction of C, are in excellent agreement. 

Over the range of table 5 the angles of propagation vary from 8.9" to 13.4" to the 
tangent, and the speeds, relative to the disk, vary from 0.766 to 0.682. Experiments 
by the author using dye in a rotating tank of water have shown angles of propagation 
in good agreement with the computational results. Thus, as in the Ekman layer 
(Spooner & Criminale 1982) the C, are not much different for Type 1 and Type 2. In 
retrospect one should not be surprised by this result because these are advected 
instabilities that both extend well into the basic flow (figure 7), not waves following 
independent wave equations. From tables 4 and 5, C, for Type 1 is consistently less 
than for Type 2, perhaps because Type 1 cells do not extend as far out of the 
boundary layer. 

5. The radial propagation and growth of disturbances 
The rate of growth of amplitude with radius for a disturbance may be written as 

dlnA/dr = a/(-2ReCg,) ,  (30) 
where Re appears in the denominator because of the method of non-dimen- 
sionalization, and the factor arises because d In Aldt = :a. Upon integration, noting 
that in non-dimensional form r = -Re, 

dRe', 
a 

where a and C,, are functions of Re. Ln (A/A,) is sometimes called the N-factor, and 
according to Bushnell, Malik & Harvey (1988) N-factors of 9-11 are associated with 
transition to turbulence in a wide range of undisturbed three-dimensional boundary 
layers. Indeed, Wilkinson & Malik (1985) found N-factors of about N = 10 from hot- 
wire measurements of the stationary mode on a rotating disk. But at  what values of 
L and 8 should a(Re) and C,,(Re) be evaluated if (31) is to be integrated to find the 
radial growth of disturbances Z 

In the circular geometry equiangular spiral waves cannot maintain constant 
spacing with radius, and the tendency of the waves to be at  some fixed angle is in 
conflict, in a sense, with the tendency for a fixed spacing. There must be some 
accommodation of angle and wavelength as the energy of a disturbance propagates 
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Re 

Mode (6,L) 

(10,201 
(15,201 
( - 20,25) 
( - 15,30) 
( - 10,30) 
( -5,301 
Variable 

Re, 
310 
300 
69 
78 
87 

102 
69 

200 280 360 

0.61 
1.19 

1.43 2.32 3.14 
1.75 3.21 4.50 
0.93 2.61 4.25 
1.12 2.71 4.39 
1.90 3.56 5.22 

- - 

- - 

440 

3.33 
4.60 
3.42 
5.62 
5.88 
6.01 
6.91 

520 

7.43 
9.63 
4.66 
6.62 
7.14 
7.50 
8.57 

TABLE 6. N = In (AIA,) as a function of Re for several different modes of instability. First 2 rows: 
Type 1 modes. Rows 3 4 :  Type 2 modes. The last row is baaed upon the maxima of a/2ReCV as 
a function of Re. 

radially. This problem arises from the representation of the disturbances by Fourier 
modes in a rectangular coordinate system. Presumably only a complete three- 
dimensional solution of the stability problem can represent the radial development 
of disturbances without ambiguity, and in the present study there can be no strict 
basis upon which to choose the values of B and L, and therefore a and Cgr, as r 
changes. 

In spite of these shortcomings estimates of the growth of disturbances have been 
made by determining a(Re) and C,,(Re) in two different ways. In table 6 the radial 
growths of selected modes with fixed values of E and L are presented. Of the two 
examples of Type 1, mode (15,20) attains N = 9.63 at Re = 520, a growth nearly 
identical to the observed points of figure 8 in Wilkinson t Malik (1985). Of the four 
examples of Type 2, mode (-5,30) starts at the largest Re,(,, but soon attains larger 
values of N than the other modes, reaching N = 7.5 a t  Re = 520. 

In the second method the maxima of (a/2Re C,,) (allowing B and L to change with 
Re) have been used in (31). This method gave N = 8.47 at Re = 520. Thus the correct 
value for Type 2 instabilities probably lies in the interval 7.5 < N < 8.5 if the Fourier 
representation gives reasonable estimates of the local values of a and C,. The two 
methods do not differ greatly because C,, does not vary much with Re, B ,  and L, and 
because the second method is dominated by values of a close to those of mode ( - 5 ,  
30). 

As with Type 2, the precise Type 1 mode that one should expect in an experiment 
is not certain. Table 7 gives values of C,, C, and a at Re = 400 and at Re = 520. 
There it can be seen by interpolation that : (i) the most unstable mode varies slightly 
with Re; (ii) the stationary mode, C, = 0, is not quite the same as the most unstable 
mode (also see figure 5); and (iii) for all Type 1 modes C,, > 0 even though C,  may 
be negative (table 1). 

If fixed disturbances on a disk trigger instability, as in experiments discussed by 
Wilkinson & Malik (1985), one should expect Type 1 to be stationary. Stationary 
vortices need not always occur, however, and in rotating disk experiments with 
water (and dye) over a clean glass plate Type 1 often has been seen to move. 
Although data are not available for the von KBrmBn layer, non-zero values of C, 
have been observed for Type 1 waves in the Ekman layer at angles from 6.1' to 15.1°, 
as documented in Faller (1963). 
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-8 c /y/'- Gregory et al. (1955) 

Re 

FIGURE 10. Four transition mechanisms, A, B, C, and D, dependent upon the initial amplitude 
excitation, A,, of Type 2 vortices by the free-steam flow. The curves, based upon disturbances with 
E = -5 and L = 30, illustrate the growth of amplitude, A ,  as a function of Re, starting from 
different A ". 

Re = 400 Re = 520 

L 10 15 20 10 15 20 

CP 
0.0137 -0.0308 -0.0720 15 0.0132 -0.0325 -0.0749 

20 0.0206 -0.0255 -0.0683 0.0205 -0.0243 -0.0659 
25 0.0308 -0.0159 -0.0584 0.0294 -0.0157 -0.0576 

Cgr 

15 0.0807 0.0751 - 0.0945 0.0756 
20 0.0701 0.0640 - 0.0823 0.0694 - 
25 

15 2.444 2.613 2.153 5.078 5.047 4.870 
20 2.199 2.614 2.522 4.995 5.597 5.520 
25 0.986 1.502 1.547 3.760 4.381 4.439 

TABLE 7. Values of Cp, C, and a for selected modes of the Type 1 instability at  Re = 400 and 
a t  Re = 520. 

- 

- - - - - - 

U 

6. Transition mechanisms 
Gregory et al. (1955) found transition from undisturbed flow at the average 

Reynolds number of Re, = 523+ 13 (one standard deviation from 9 measurements) 
while Wilkinson & Malik (1985) found transition for a clean plate in the range 
543 < Re, < 556. Because the precise point of transition is a matter of definition and 
may depend upon the observational method, and because growth rates in the present 
study were obtained routinely only to Re = 520, the nominal value is taken here to 
be Re, = 520. 

The linearized numerical results can only bring instabilities to some reasonable 
amplitude, say A = 0.1, before nonlinear interactions become important, and they 
can say nothing directly about transition mechanisms. But the linearized growths 
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allow us to speculate on different transition mechanisms that may occur according 
to the relative amplitudes of the Type 1 and Type 2 vortices together with the speed 
of the basic flow, as represented by Re. 

Figure 10 supposes four possible transition mechanisms. The ranges of A, and Re 
for these can only be approximated, and the curves of In (A) v8. Re are based upon 
only the single mode ( - 5,30) for illustration. The scheme of figure 10 is based in part 
upon three-dimensional computations for the Ekman layer by Ugo Piomelli and this 
author, reported in part in Faller et al. (1989), where it has been found that at certain 
values of Re finite-amplitude Type 2 vortices can suppress the growth of linearly 
unstable Type 1 modes, and, conversely, existing finite-amplitude Type 1 vortices 
can suppress the growth of linearly unstable Type 2 modes. 

Mechanism A occurs when the external random disturbances give rise to initial 
amplitudes A, > 0.0051, approximately. (The corresponding Re value when A = 0.1 
is 300.) For A, > 0.0051 several Type 2 modes will grow and reach finite amplitude 
more or less simultaneously and will interact to produce a spectrum of low-level 
turbulence, and aa Re increases the turbulence will gradually develop. 

If the external disturbances give A, < 0.0051, the single Type 2 mode that grows 
most rapidly will become of large amplitude and will suppress other modes as it 
interacts nonlinearly with the baaic flow. This interaction will not produce a 
secondary instability (Mechanism B) if Re is too small. Thus there can be a range of 
A, (stippled region of figure 10) in which a single finite-amplitude Type 2 mode, plus 
its harmonics, dominates without transition. The experiment of figure 11 below 
Re = 356 appears to be such an example. 

Transition will occur when some combination of the dominant Type 2 mode and 
Re are large enough (Mechanism B). A secondary instability (ribs) of much smaller 
scale and nearly perpendicular to the primary Type 2 vortices arises and rapidly 
interacts with the primary vortices to produce turbulence. This occurred in the 
experiments of Faller & Kaylor (1966a), and a more detailed description is given 
in 57. 

Type 1 is first unstable at Re,(,) = 285 and it seems likely that there will be some 
range of Re where, with a certain low level of excitation of Type 2, both Type 1 
and Type 2 will reach finite amplitude in the same range of Re. In  the scheme of 
figure 10 this range is 430 <Re <490 and the corresponding initial amplitude 
range for Type 2 is 0.0027 > A, > 0.0010. Then the two waves may be expected to 
interact nonlinearly (Mechanism C) to generate other modes and to produce a full 
spectrum of turbulence. Although examples of this mechanism are not documented, 
cine film sequences indicate the reality of Mechanism C in certain cases. 

For 0.00010 > A, > O.ooOo56 it is supposed that Type 1 will attain a sufficiently 
large amplitude to suppress the growth of Type 2 but will still be too small to produce 
transition by interaction with the basic flow. Thus there may be a second range, 
490 <Re < 520 (stippled, corresponding to the indicated range of A,) where 
transition does not occur if only this single Type 2 mode is excited. 

Above Re = 520 the interaction of Type 1 with the basic flow (Mechanism D), is 
believed to lead to transition. Wilkinson & Malik (1985) have shown the presence of 
higher wavenumber fluctuations as transition is approached, so the detailed 
mechanism may again involve the generation of a secondary instability. 
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' FIGURE 11. Photographs at intervals of 0.342 s that illustrate transition by Mechanism B. The 
tank radius is 114 cm, H = 15 cm, Sa = 0.325 s-l, Y = 0.99 cm' s-l, and the water waa initially at  
rest. The circular line8 of the background grid are at T = 50,60,70, and 80 cm (Re = 285, 343,400, 
and 467), and the radial lines are a t  intervals of 15'. This grid, and an auxiliary rectangular grid 
(left), are beneath the smooth plate-glass boundary. The dye is methylene blue and is moving 
outward in the boundary layer after being poured in at the centre of the tank to inject the dye and 
to create disturbances. 
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7. A transition experiment 
The sequence of figure 11 shows the appearance of the secondary instability (ribs) 

in a series of three bands of dye as they move outward and undergo transition by 
Mechanism B. In this series the ribs are first visible at about r = 68, 62, and 67 cm 
(Re = 390,356, and 385), and turbulence appears at about r = 70 cm (Re, = 402). As 
with the primary instability the dark dye bands of the ribs are interpreted as regions 
where there has been upward motion to produce a thicker layer of dye while the clear 
spaces between the ribs are regions where there has been downward motion. Note 
that the ribs sometimes develop a two-band structure (a clear space in the middle of 
each rib) suggesting the existence of a strong first harmonic of the rib wavelength. 

The nature of the secondary instability has not been clearly identified. Although 
in figure 11 the ribs are nearly perpendicular to the Type 2 bands, on other occasions 
they have been observed at  an angle closer to that expected of Type 1. A proper 
theory of the secondary instability must consider the complex three-dimensional 
flow that is the sum of the basic flow and the Type 2 vortices. 

Average characteristics of the primary bands and of the ribs are given in table 8 
but these values are for only the one sequence of events in figure 1 I .  Dye bands from 
the same cine film at an earlier time showed very small negative angles, different 
spacings, etc. Even within the analysed sequence there are substantial variations in 
spacing and other characteristics, and the analysis is somewhat subjective. These 
variations probably are caused by a lack of uniformity in the stimulation of the 
instability near the centre of the tank, which came from simply pouring in the dyed 
water, but variation may also arise from the adjustments of spacing and angle that 
must occur as the vortices move outward. Note from table 8 that the observed band 
spacing L = 53.9 is substantially larger than that of the most unstable wavelength 
from the numerical model. This might be due to the equiangular spreading of bands 
that formed with a lesser spacing at a lower radius. 

The closeness of the observed and numerical values of C,, 0.353 and 0.357, 
respectively (table 8) is better than should be expected from the accuracy of the 
observations. Also in good agreement are the tangential speed of the ribs and the 
computed tangential group velocity. Note that these values are both only about one 
half the apparent tangential speed at which a band intersection moves along a 
circular arc, in this case C,/sins = 1.29. 

8. Conclusions 
The characteristics of the instabilities of the von K k m i n  (rotating disk) boundary 

layer have been numerically computed for a large range of the parameters Re, E ,  and 
L .  The results include growth rates, phase speeds, group velocities, the ratio of the 
energy of the longitudinal fluctuations to that of the overturning cells, and the cell 
structures. Wherever comparisons can be made the results are generally in excellent 
agreement with previous computational results and with available experimental 
data. The complete tabulated data and extended discussions of the results are 
available in technical notes (Faller et al. 1989; Faller 1990). 

The nature of the secondary instability has not been clearly identified. A proper 
theory must consider the complex three-dimensional flow that is the sum of the basic 
flow and the finite-amplitude Type 2 vortices. A factor of possible importance is the 
ratio RK. From table 3 we find ratios in the range 15 < RK < 50, suggesting ratios 
of u to v or w between 5 and 8. For Ekman-layer instability RK is the order of 2, and 
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Average radius of measurements 

Average wavelength 
Computational wavelength for maximum a at Re = 350, and E = - 15 
Average normal speed (phase speed) 

61.4 cm (Re = 352) 

9.4 cm (L = 53.9) 
L = 38 
6.84 cm 8-l 

Average angle - 15.4' 

Observed phase speed 0.343 
Computational phase speed, C, 0.347 

Parallel to bands 1.64 cm 
Non-dimensional 9.4 

Tangential speed of individual ribs 0.666 
Computational group velocity, C, 0.671 

Wavelength of ribs 

TABLE 8. Average characteristics of the primary dye bands (Type 2 instability) and ribs 
(secondary instability) in the sequence of figure 11. 

in the Bodewadt layer RK is typically less than 1. Similar secondary instabilities 
have not been found in the Ekman and Bodewadt layers, and the relatively large 
values of u in the von K6rm6n layer suggest that the longitudinal fluctuations, u, 
may play a significant role in the mechanism of the secondary instability. 

The Type 2 instability is the probable source of early transition when the external 
flow is subject to random turbulent fluctuations. With such fluctuations the 
Reynolds number of transition and the mechanism of transition should depend upon 
the level of excitation of the Type 2 instability. Several proposed mechanisms, 
supported in part by laboratory experiments and in part by three-dimensional 
modelling of the unstable Ekman layer, are proposed. These are, in order of 
decreasing amplitude of the disturbances: A, the interaction of several Type 2 
modes; B, the interaction of a dominant Type 2 mode with the basic flow to produce 
a secondary instability; C, the interaction of Type 2 and Type 1 modes; and D, the 
interaction of a dominant Type 1 mode with the basic flow to produce a secondary 
instability. 

The author is grateful to the National Science Foundation for support under Grant 
MSM 8617897. Special thanks are extended to Professor Ugo Piomelli with whom 
extensive computations on transition mechanisms in the three-dimensional Ekman 
layer have been carried out using the Cray X/MP at the San Diego Supercomputer 
Center . 

Appendix A. Timescales and growth rates 
In this study, and in Faller & Kaylor (1966b) for the Ekman layer, it has been 

found that near Re,(l, the growth rate of the Type 1 instability is nearly linear with 
Re-Re,(,,, ,and near Re,(,, the growth rate of Type 2 increases more or less as 
(Re-Re,(,,)l. Some may find these results to be a t  odds with those of Lilly (1966), 
Spooner & Criminale (1982), and others, but the difference lies simply in the non- 
dimensionalization of time. 

In Lilly (1966) non-dimensional time is defined by 

t(L) = tU/D,  (A 1) 

where U is a basic-flow scaling velocity and D is the boundary-layer depth, a scaling 
common to many boundary-layer studies particularly in non-rotating systems where 
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there is no natural timescale. Here and in Faller & Kaylor (1966b) time has been 
scaled as 

t(F) = tQ, (A 2) 

where 52-’ is the natural timescale of the system due to rotation. 
Equating t from (A 1) and (A 2) one finds 

t(L) = Re t(F),  (A 3) 

a(L) = Re-’a(F). (A 4) 

and it follows that the corresponding growth rates are related by 

Then if the growth rate for Type 1 is given by 

= a ( R e - R e C ( 1 ) ) 7  

it follows that a( 1, L) = a( 1 -Re,(,,/Re). 

Similarly, if we assume that for Type 2 

a ( 2 , F )  = (a+b(Re-Re,(,,)i (A 7) 

then a(2, L )  = ((a/Re),  + b(Re-l -Rec(2,/Re2))i--a/Re. (A 8) 

Thus, for this simple representation a(2,L)+O as Re-oo, but this is not true 
of a(2,F). 

Appendix B. A polar coordinate interpretation of group velocity 
From (29) one can write 

C g  = Ncp-Cg,) +Pcge 

where Cgd = -L  aC,/aL may be called the ‘normal deficit ’, it being a deficit from the 
phase speed, and Cge = aC,/aO may be called the ‘parallel component ’, it  being a 
component of C, parallel to the wave crests. Thus for waves in which both C,d and 

To derive Cge consider two waves with the same L but with C,, > Cpl, and with 
Wave 2 at a small angle A8 to Wave 1 as in figure 12. Subtract out the velocity C,, 
so that Wave 1 appears to be fixed. Then the time required for the initial interference 
pattern to first be repeated by the motion of Wave 2 relative to Wave 1 is simply 

Cge = 0, Cg = C,. 

T = L/  ( C,, - C,, COS AO) . (B 2) 

The interference pattern can be characterized by the intersections of the wave 
maxima, and during time T an intersection moves from A to B, a distance 

Y = L/sinAO. (B 3) 

The apparent speed of propagation of energy to the left is simply 

C,, = Y / T  = (C,, - C,, COB AO)/sin Ad, 

and as AO --f 0, C,, becomes 
C,, = AC,/AO. 

If AC, were held fixed while A0 was reduced, the pattern would move ever more 
rapidly to the left. This phenomenon is commonly observed when viewing some 
nearly horizontal lines (e.g. telephone wires) through venetian blinds, and the 
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FIGURE 12. Group propagation by the relative motions of superimposed wave trains with the same 
wavelength, L,  but with differing phase speeds. C,, and C,,, and at an angular difference A8. 

illusion is appropriately called the ‘venetian blind effect’. In  a physical wave 
problem, however, AC, will be a function of A0, in general, and the appropriate 
limiting expression for the rate of propagation of the pattern, the apparent energy 
propagation rate, is, as A 0  + 0, 

When this is a relatively large speed compared to the group velocity component 
along x, as is sometimes the case in rotating systems and as is the case in this study, 
the term ‘venetian blind effect ’ may be appropriate for descriptive purposes. 

C,, is derived in a similar way. Consider two waves having small differences 
in wavelength, AL, and phase speed, AC,, with L, > L, and C,, > Cpl, but with 
AO= 0. Starting where maxima of the two waves coincide, the time for the 
maximum of Wave 2 to  overtake the next maximum of Wave 1 is 

C,, = aC,/aO. (B 6) 

T = L,/(~p2--CpJ. (B 7) 

This is again the time for the interference pattern to first repeat itself when viewed 
relative to Wave 1. In this time the two wave maxima have travelled a distance 

X = nL, = (n-1)L2 (B 8) 

where n, the number of L,  moved in time T ,  is given by 

n = L 2 / ( L 2 - L 1 ) .  

By considering the interference pattern of the two wave trains during time T and 
relative to Wave 1, as in the derivation of C,,, it is easily seen that:  (i) the envelope 
of the interference pattern moves toward negative x; (ii) X is the wavelength of the 
envelope; and (iii) the pattern moves through -X in time T .  The relative speed of 
the group is thus given by 

C,, = - X / T  = - L, AC,/AL. (B 10) 

Taking C, to  be a function of L,  as AL + 0 the equation for the group velocity deficit 
becomes 

c,, = -L ac,/aL. 
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